Constant Mean Curvature Surfaces with Two Ends in Hyperbolic Space

نویسندگان

  • Wayne Rossman
  • Katsunori Sato
چکیده

We investigate the close relationship between minimal surfaces in Euclidean 3-space and constant mean curvature 1 surfaces in hyperbolic 3-space. Just as in the case of minimal surfaces in Euclidean 3-space, the only complete connected embedded constant mean curvature 1 surfaces with two ends in hyperbolic space are well-understood surfaces of revolution – the catenoid cousins. In contrast to this, we show that, unlike the case of minimal surfaces in Euclidean 3-space, there do exist complete connected immersed constant mean curvature 1 surfaces with two ends in hyperbolic space that are not surfaces of revolution – the genus 1 catenoid cousins. The genus 1 catenoid cousins are of interest because they show that, although minimal surfaces in Euclidean 3-space and constant mean curvature 1 surfaces in hyperbolic 3-space are intimately related, there are essential differences between these two sets of surfaces. The proof we give of existence of the genus 1 catenoid cousins is a mathematically rigorous verification that the results of a computer experiment are sufficiently accurate to imply existence.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hyperbolic surfaces of $L_1$-2-type

In this paper, we show that an $L_1$-2-type surface in the three-dimensional hyperbolic space $H^3subset R^4_1$ either is an open piece of a standard Riemannian product $ H^1(-sqrt{1+r^2})times S^{1}(r)$, or it has non constant mean curvature, non constant Gaussian curvature, and non constant principal curvatures.

متن کامل

On the Geometry of Constant Mean Curvature One Surfaces in Hyperbolic Space

We give a geometric classification of regular ends with constant mean curvature 1 and finite total curvature, embedded in hyperbolic space. We prove that each such end is either asymptotic to a catenoid cousin or asymptotic to a horosphere. We also study symmetry properties of constant mean curvature 1 surfaces in hyperbolic space associated to minimal surfaces in Euclidean space. We describe t...

متن کامل

Spacelike Mean Curvature 1 Surfaces of Genus 1 with Two Ends in De Sitter 3-space

We give a mathematical foundation for, and numerical demonstration of, the existence of mean curvature 1 surfaces of genus 1 with either two elliptic ends or two hyperbolic ends in de Sitter 3-space. An end of a mean curvature 1 surface is an “elliptic end” (resp. a “hyperbolic end”) if the monodromy matrix at the end is diagonalizable with eigenvalues in the unit circle (resp. in the reals). A...

متن کامل

- Spaces

We show existence of constant mean curvature 1 surfaces in both hyperbolic 3-space and de Sitter 3-space with two complete embedded ends and any positive genus up to genus twenty. We also find another such family of surfaces in de Sitter 3-space, but with a different non-embedded end behavior.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Experimental Mathematics

دوره 7  شماره 

صفحات  -

تاریخ انتشار 1998